Balancing Affordability and Conservation in Water Rate Setting

Conservation and Rates

Price Elasticity of Demand

Price Elasticity of **=** Demand

% Change in Quantity Demanded

% Change in Price

Price Elasticity of Demand for Water

.1 - 1

Conservation and Affordability

Conservation, Affordability, and Revenue

Conservation, Affordability, and Revenue

Average Water Bill

Median Household Income

Affordability Measured as % Disposable Income

(Basic W+S Cost Per Capita)X HH Size

Household Income – Essential Expenses

Affordability Measured as % Disposable Income

(Basic W+S Cost Per Capita)X HH Size

Household Income – Essential Expenses

AR20= Affordability Ratio for 20th Percentile of Income

Affordability Measured as Hours Minimum Wage

(Basic W+S Cost Per Capita)X HH Size

Hourly Minimum Wage

When Measured Correctly

Fixed Prices

Affordability

Inclining Block Rates

Important for Conservation?

Fixed Prices

Conservation

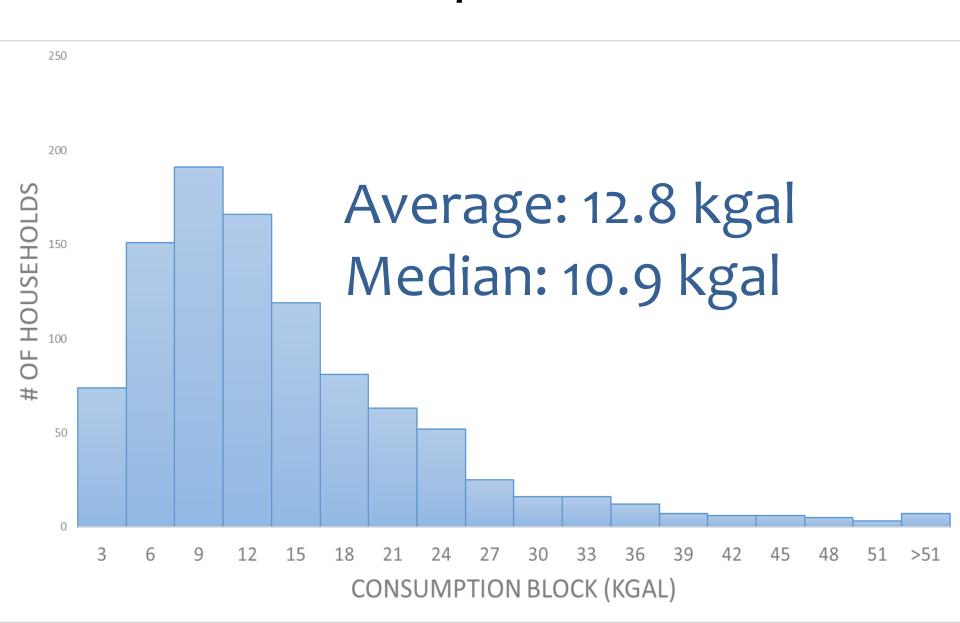
Inclining Block Rates

Important for Conservation?

Takeaway

Lower fixed rates and higher inclining block rates are better for both conservation and affordability!

Problems?


- Rate Complexity
- Revenue?
- Revenue Stability

Simulation

- Ratesville, TX
- Town of 1,000
- Uses uniform rate structure with fixed water and sewer rates
- How do different rate structures impact different outcomes?

Baseline Consumption

Simulation

- Evaluating Rates?
 - HM (target: 8)
 - AR20 (target: 10%)
 - %MHI (bad target: 2%)
 - Gallons Used/Saved
 - Rate Progressivity
 - Poehler Index
 - Revenue (target \$125k)
 - Percent Fixed Revenue
 - Percent Low Use

Simulation

Assumptions:

- Price elasticity of essential use (<6,000 gallons)= o
- Price elasticity of non-essential use (>6,000 gallons)= .5
- Minimum Wage= **\$7.25**
- Monthly Disposable income= \$685
- Median HH income= \$52K

Rate Structure 1- Basic Uniform with Fixed Prices

Flat Sewer: \$12

Flat Water: \$18

Variable Sewer: \$3.50 per kgal

Water Variable: \$4.00 per kgal

Rate Structure 1- Basic Uniform with Fixed Prices

HM 10.34

AR20 10.95%

%MHI 2.9%

Gallons Used 12.8 mg

Rate Progressivity o

Poehler Index 1

Revenue \$126k

Percent Fixed Revenue 23%

Percent Low Use 10%

Rate Structure 2- Inclining Block with Fixed Prices

Flat Sewer: \$12

Flat Water: \$18

Variable Sewer: \$3.50 per kgal

Water 1st block (up to 6 kgal): \$3.00 per kgal

Water 2nd block (6 to 12 kgal): \$5.00 per kgal

Water 3rd block (over 12 kgal): \$7.00 per kgal

Rate Structure 2- Inclining Block with Fixed Prices

HM 9.52

AR20 10.07%

%MHI 3.4%

Gallons Used 11.8 mg

Gallons Saved 1 mg

Rate Progressivity .297

Poehler Index 1.62

Revenue \$147k

Percent Fixed Revenue 20%

Percent Low Use 8%

Rate Structure 3- Inclining Block with No Fixed Prices

Variable Sewer: \$3.50 per kgal

Water 1st block (up to 6 kgal): \$3.00 per kgal

Water 2nd block (6 to 12 kgal): \$5.00 per kgal

Water 3rd block (over 12 kgal): \$7.00 per kgal

Rate Structure 3- Inclining Block with No Fixed Prices

HM 5.37

AR20 5.69%

%MHI 2.7%

Gallons Used 11.8 mg

Gallons Saved 1 mg

Rate Progressivity .297

Poehler Index 1.62

Revenue \$117k

Percent Fixed Revenue 0%

Percent Low Use 4.5%

Rate Structure 3- Inclining Block with No Fixed Prices Adjusted

```
Variable Sewer: $3.50 per kgal
Water 1<sup>st</sup> block (up to 6 kgal): $3.75 per kgal
Water 2<sup>nd</sup> block (6 to 12 kgal): $6.00 per kgal
Water 3<sup>rd</sup> block (over 12 kgal): $9.00 per kgal
```


Rate Structure 3- Inclining Block with No Fixed Prices Adjusted

HM 6

AR20 6.35%

%MHI 2.9%

Gallons Used 11.2 mg

Gallons Saved 1.6 mg

Rate Progressivity .359

Poehler Index 1.72

Revenue \$126k

Percent Fixed Revenue 0%

Percent Low Use 4.6%

But What About Revenue Stability?

Rate Structure 4- Uniform with Fixed Prices and Built in Usage

Flat Sewer: \$16

Flat Water: \$25

Variable Sewer: \$3.50 per kgal

Water Variable: \$6.00 per kgal

*Consumption up to 3kgal included in fixed prices

Rate Structure 4- Uniform with Fixed Prices and Built in Usage

HM 9.59

AR20 10.15%

%MHI 2.9%

Gallons Used 11.8 mg

Gallons Saved 1 mg

Rate Progressivity .495

Poehler Index 1

Revenue 125k

Percent Fixed Revenue 33%

Percent Low Use 8%

Rate Structure 5- Inclining Block with Fixed Prices and Built in Usage

Flat Sewer: \$17

Flat Water: \$23

Variable Sewer: \$3.50 per kgal

Water 1st block (up to 6 kgal): \$4.00 per kgal

Water 2nd block (6 to 12 kgal): \$6.00 per kgal

Water 3rd block (over 12 kgal): \$12.00 per kgal

*Consumption up to 3kgal included in fixed

prices

Rate Structure 5- Inclining Block with Fixed Prices and Built in Usage

HM 8.62 AR20 9.12%

%MHI 2.9%

Gallons Used 11.1 mg

Gallons Saved 1.7 mg

Rate Progressivity .593

Poehler Index 2.06

Revenue 127k

Percent Fixed Revenue

Percent Low Use

31%

8%

What about affordability programs?

Takeaways

- Measurement matters!
- Fixed rates are bad for affordability
- Inclining block rates are good for affordability
- Affordability and conservation not in conflict, but work hand in hand
- Even if you keep fixed rates, there are ways of making things more affordable
- If you have the resources for affordability programs, you have the resources for careful rate design

David Switzer switzerd@missouri.edu @DavidLSwitzer

